Produce a prototype in less than 24 hours using FDM and Polyjet material.
Traditionally, patterns are fabricated from wood, plastic or metal, which can be expensive, have long lead times and require skilled labor to oversee the pattern-making process. With 3D printing, you can speed up the process of creating a complex prototype pattern without increasing cost and without the traditional constraints of machining.
3D printing typically has zero or minimal start-up costs. So, instead of CNC machining the pattern, 3D printing it using FDM or PolyJet technology from Stratasys saves cost—often 50-70% over CNC machining.
FDM materials are strong and durable. This makes it easy to extract the pattern from the mold without damage so the pattern can be reused to make future molds.
3D printing makes it possible to produce a prototype pattern in less than 24 hours. Lead times are reduced by 70 to 90 percent.
Insert models will not inhibit curing and won’t distort with heat. Silicone molding creates highly complex molds that capture the master pattern’s intricate details and models are extractable without breakage.
Silicone molding — also known as room temperature vulcanizing (RTV) molding — creates finished products for prototyping, functional testing and short-run production. Considering tool life and cycle times, it is ideal for small quantities (25 – 100 castings) because it offers lead times and costs that are well below that of machining or injection molding.
Traditionally, patterns are fabricated from wood, plastic or metal, which can be expensive, have long lead times and require skilled labor to oversee the pattern-making process. As a result, designers may have to limit or simplify the geometry of the pattern to accommodate these factors.
PolyJet 3D printing technology is an innovative alternative to machining patterns for silicone mold making. It builds patterns layer by layer, using data from computer-aided design (CAD) files. With its inkjet-like process, PolyJet delivers extremely high-resolution patterns with smooth surface
As a result, PolyJet patterns are typically mold-ready and have subtle details that can be transferred to the urethane castings. For high-gloss or clear finishes, a little polishing is all that is needed. Additionally, complex and intricate patterns can be made without adding time, cost or challenges to the design process. With PolyJet, silicone molds can be ready to make parts in as little as 24 hours.
PolyJet 3D printing technology is an innovative alternative to machining patterns for silicone mold making. It builds patterns layer by layer, using data from computer-aided design (CAD) files. With its inkjet-like process, PolyJet delivers extremely high-resolution patterns with smooth surface
As a result, PolyJet patterns are typically mold-ready and have subtle details that can be transferred to the urethane castings. For high-gloss or clear finishes, a little polishing is all that is needed. Additionally, complex and intricate patterns can be made without adding time, cost or challenges to the design process. With PolyJet, silicone molds can be ready to make parts in as little as 24 hours.
For larger quantities of castings or multi-part assemblies, family molds are ideal. These multi-cavity tools can produce several pieces with each casting cycle, but each cavity needs its own pattern. Since machined patterns are made in a series, the mold is delayed. Numerous PolyJet patterns — as long as they don’t exceed the capacity of the 3D printer — may be produced in one build, and at a fraction of the time required to make them individually.
Average lead time savings: | 70% – 90% |
Average cost savings: | 30% – 85% |
Quality: |
Smooth, nearly mold-ready surfaces Fine textures and details Complex, intricate designs |
Efficiency gains: |
Automated pattern-making Little or no pattern preparation |
Quantity: | Small volume (5 – 250 castings) |
Size: | 6 mm – 300 mm (0.25 in – 12 in) |
Design: | Complex, intricate and highly detailed |
Revisions: | Design modifications are likely. |
Multiples: | Family or duplicate molds for multi-piece casting |
Silicone molding with FDM patterns is a three-step process:
FDM technology provides an alternative method for producing patterns for silicone molds. FDM is an additive manufacturing (3D printing) process that builds plastic parts layer by layer using data from computer-aided design (CAD) files. With fast FDM pattern creation, mold making can start shortly after pattern design, even when the pattern is complex. Low cost FDM materials also have greater longevity, strength, and heat resistance than those used with other additive manufacturing technologies. These characteristics allow manufacturers to create silicone molded products faster and less expensively than ever before.
The weight of silicone rubber and heat from an accelerated curing process can cause patterns to bow, buckle or break. However, FDM thermoplastics are inert, so the finished patterns do not inhibit the curing reaction, nor are they affected by the heat and weight. The result is accurate molds.
Additionally, FDM materials are strong and durable. This makes it easy to extract the pattern from the mold without damage so the pattern can be reused to make future molds. Being dimensionally and physically stable, a single pattern can make molds for months or even years to come. And if a prototype or a cast urethane part reveals the need for design changes, a new pattern can be designed and ready for use within hours.
Average lead time savings: | 70% – 90% |
Average cost savings: | Up to 70% |
Greater performance: |
Inert: Will not inhibit curing Strong: No pattern distortion Stable: Store indefinitely Durable: Extractable without breakage Lightweight: Sparse fill interior option |
Design: |
Complex, intricate Large parts Internal cavities Thin walls Revisions likely |
Molds: |
Duplicate molds required Heat accelerated cure silicones Dual-purpose patterns: prototyping and mold making |
Size: (XYZ) | 25 mm (1 in) to 915 mm (36 in) |
Quantity: | 5 to 100 castings |
Life expectancy: |
Reuse pattern to create multiple molds Pattern stored for re-use |
FDM Technology. 3D print durable parts with real thermoplastic. FDM Technology is a powerful Stratasys-patented additive manufacturing method.
FPolyJet Technology. 3D print precision prototypes in a wide range of materials. PolyJet 3D printing technology is a powerful additive manufacturing method patented by Stratasys.
With three complementary 3D printing technologies designed for a range of applications, Stratasys is a powerful partner in the product development department, in classrooms and labs, and on the production floor.
FDM Technology. 3D print durable parts with real thermoplastic. FDM Technology is a powerful Stratasys-patented additive manufacturing method.
FPolyJet Technology. 3D print precision prototypes in a wide range of materials. PolyJet 3D printing technology is a powerful additive manufacturing method patented by Stratasys.
Series | Idea | Design | Production |
---|---|---|---|
FDM | 2 | 3 | 3 |
PolyJet | 0 | 5 | 5 |
Application compatibility: (0 – N/A, 1 – Low, 5 – High)
Produce a pattern in less than 24 hours at a lower cost.
Taking your idea from vision to tangible prototype with 3D printing.
AU Phone: +613 9785 2333
NZ Phone: +649 801 0380