Select Page

DESKTOP METAL STUDIO SYSTEM+

Office-friendly metal 3D printing.
Designed as an end-to-end solution, it’s the
only way to print complex metal parts in-house.

RESERVE A SYSTEM

10x cheaper

The Studio System+ is up to ten times cheaper than comparable laser-based systems. With purchase and payment plan pricing options, it’s the only metal 3D printing system that is cost-effective for engineering teams.

Built to scale

The system is designed to adapt to diverse business needs. The software auto-generates custom build plans optimized for multi-part jobs, while increased debind and sinter capacity enable scalable throughput for low volume production.

Safer

NO Hazardous Powders
NO Respirators
NO External Ventilation
NO 480V 3-Phase Power
NO Stress Relief
NO Dedicated Operators
NO Welded Supports
NO Special Facilities
NO Dangerous Lasers
NO 3rd Party Equipment

An end-to-end solution

The Studio System+ is a three-part solution that automates metal 3D printing. Tightly integrated through Desktop Metal’s cloud-based software, Fabricate™, it delivers a seamless workflow for printing complex metal parts in-house—from digital file to sintered part.

A software-controlled workflow

Fabricate™ software automates even the most challenging aspects of the fabrication process. It auto-generates supports for easy removal and creates custom build plans that are tuned to the geometry and material for every part in the job.

The printer shapes the parts

Unlike laser-based systems that selectively melt metal powder, the printer extrudes bound metal rods—similar to how an FDM printer works. This eliminates the safety requirements often associated with metal 3D printing while enabling new features like the use of closed-cell infill for lightweight strength.

How it works

Unlike laser-based systems that selectively melt metal powder, the Studio printer extrudes bound metal rods–similar to how a plastic FDM printer works. This eliminates the safety requirements associated with metal 3D printing while opening up new alloys and enabling new features like the use of closed-cell infill for lightweight strength.

SPEED: 16cm³/hr

LAYER HEIGHT: 50µm

BUILD AREA: 300mm(W) x 200mm(D) x 200mm(H)

The debinder prepares green parts for sintering

The debinder prepares green parts for sintering by dissolving primary binder. With a low emission design, it requires no external ventilation and is safe for an office environment. Automatic fluid distillation and recycling means there is no need to refill between each cycle.

FLUID VOLUME: 17.4L max

VAPOUR MANAGEMENT: no external ventilation required

FOOT PRINT: 740mm(W) x 1020mm(H) x 570mm(D)

The furnace sinters the parts

Fully-automated with closed-loop thermal control, the furnace is the first to deliver industrial-strength sintering and an office-friendly package. Built-in profiles are tuned to every build and material to ensure uniform heating and cooling without the residual stresses introduced in laser-based systems.

GAS CONNECTION: 2 x 900L onboard canisters

PEAK TEMP: 1400°C

FOOT PRINT: 1380mm(W) x 1620mm(D) x 750mm(H)

The New Features of the Studio System+

The system features the same office-friendly metal 3D printing as the original Studio System+
with new print capabilities and a scalable design for increased throughput.

Print at higher resolution.

A new swappable 250μm printhead with supporting software profiles enables new geometries and applications—achieving smaller parts and fine features with an improved surface finish.

Watch a live stream of the build.

An in-chamber build plate camera captures video of the part as it prints — viewable in a web browser. This gives the user a greater insight into their print and the ability to monitor print success.

Debind and sinter in bulk.

New stackable shelving increases part capacity of the debinder and furnace for greater throughput. Increased workload volume addresses bottlenecks typical at the debind and sinter stages.

Produce even better parts.

A new retort box design supports thermal uniformity—resulting in higher-quality parts.

Reduce operational costs.

External gas connections give the option to reduce the cost of consumables and achieve a lower cost-per-part.

Configure a Studio Fleet™.

New custom-configurable hardware solutions increase efficiency for low volume production of high-quality metal parts.

Prototype and mass produce with the same alloys

We designed our systems to use the same MIM (Metal Injection Molding) materials. This opens up an ecosystem of low-cost, high-quality alloys with a mature supply chain and well-studied process controls.

200+ compatible alloys

By enabling the use of metal powders from the MIM industry, our systems have access to a wide range of existing materials—from steels and aluminum to superalloys and titanium.

Up to 80% cheaper

Laser-based systems require specially formulated, cost-prohibitive metal powders. We use metal powder with a wide particle size distribution, enabling much lower materials costs.

The process

The Studio system is the only end-to-end solution for metal 3D printing. The printer and furnace were designed together, making it possible for precise control of the entire workflow automatically.

Step 1: PREP

Digital Model

The software accepts native CAD file formats–not just STL. Web-based, it runs on a remote or local server so that it is possible to manage jobs from any device securely.

Step 2: PRINT

Green Part

Similar to FDM, the Studio printer shapes a “green” part layer-by-layer by heating and extruding specially formulated bound metal rods. The green part can be easily sanded by hand.

Step 3: DEBIND AND SINTER

Sintered Part

A portion of the plastic binder is first removed. The furnace then heats the part to temperatures near melting, causing the metal powder to densify to 96-99.8%.

Step 4: POST PROCESS

Finished Part

Apply optional finishing methods such as machining or bead blasting for critical tolerances and finishes. Supports are removed by hand.

Materials

The Studio System brings a wide range of critical alloys to 3D printing—including stainless steels, copper, and tool steels. Each alloy undergoes rigorous qualification by world-leading materials scientists, and our core materials consistently meet or exceed industry standards.

Core Alloys

17-4PH
Stainless steel for strength and corrosion resistance

316 L
Stainless steel for corrosion resistance at high temps

Inconel 625
Superalloy for strength and corrosion resistance at high temperatures

AISI 4140
Low alloy, mid-carbon steel for high strength and toughness

Copper
For thermal and electrical conductivity

H13
Tool steel for hardness and abrasion resistance at elevated temperatures

Kovar
Controlled thermal expansion alloy

Case Studies

Built-Rite Tool & Die

Injection moulding firm investigates quick-turn mould application, identifies 90% cost savings. Download Now

Lumenium

Desktop Metal Studio System™ for rapid prototyping: Virginia-based startup to reduce product development timeline by 25%. Download Now

DESKTOP METAL FOR PRODUCTION

Metal 3D Printing at Scale

LEARN MORE